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I V  Line 3 from bottom, replace (39) by (42). 

Line 2 from bottom, replace (43) by (46). 

v i  i Line 13 from top, add "(tension force i s  positive, and compressive force 
force i s  negative)". 

11 Line 1 from top, replace "unloaded," by ''freely''. 

Add after equation (28), "The physical interpretation of the boundary 
conditions i s  as follows: 

The boundary conditions represent moment free support in  transverse bending 
with membrane action being resisted by stiffeners (at the edges) rigid along 
their own axis (and thus capable of taking membrane shear loads 

) , but non-resistant towards loads perpendicular to their axes and 

in  the x, y - plane!' 

a2 F 
a x a y  - 

(Reissner, E. "Non-linear Effects i n  Vibrations of Cylindrical Shells", The 
Ramo-Wooldridge Corporation Rep. No. AM 5-6, 1955, p. 15 ) . 
Line 5 from top, add "with respect to xl'after sine transforms , 
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I Page 

11 

15 

16 

- - - 
and F22 . . . . I ’  by II - F and F22...l’ . 

F22 21 
Line 1 from bottom, replace 

Lines 2 to 6 from the top should read as 

5 El = - 5.5458. . x 10 8 

9 5 E2 = 5.9363 . . x 10 

5 E3 = 7.2174. . x 10 10 

4 1  5 E4 - - - 1.7082. . x 10 7 

= 7.4502 . . x 10 10 
E5 

Line 7 from top should read as 

5 E6 = 1.763377574272 x 10 7 A i l  

Line 2 from bottom, add 1 1 ) ”  at end. 

Equation (47) now should read as 

A4, [(303.05 - 314.42 k) + 5 1 (-107+ 437 - 5.44) 10 A41 ’ 1  = 0. 

Line 2 from bottom, replace 0.000175 by 

Line 1 from bottom, replace 0.0044 by 

Equation (49) now should redd as 

0 . 0 0 0 1 7 5 f l .  

0.0044&’. 

A41 [ (155.16 - 160.98 k) + 7 1 (-85.7+ 349.7 - 4.35) lo6 A:l ] = 0. 

W W 
max 

b f l h  - 
max Line 8 from bottom, replace - 
h 

In equation (50) replace Nx by Nxi . 
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- 
Line 26 from top, replace "compression force N I' by "force N I' . 

Add the following sentences at the beginning of Section 3.2, for 
clarification. 

X x i  

N x i  1 
"In Sections 3.2 to 3.4 , both inclusive, the analysis presented i s  for 

assuming the edgewise force i s  tension. I f  N i s  compressive, as i t  i s  for 

the problem in  hand, replace N by - N ' I .  

Add at the bottom of the page. 

"If m(number of half waves i n  x direction) = 4 and n(number of half 
waves i n  y direction) = 1, and sections of the buckled plate on y = 0 

a 
and x = - m (m, pn integer < 41, then D = D (under the 

4 X Y 

x i  

x i  x i  

23 

assumption that the boundary conditions at the four edges of the square panel 
of side b are alike) (M = M ), and D = D . It follows 

X Y  Y X  X Y  Y X  
automatically that the neutral surface i n  the buckled position coincides with 
the neutral surface of the undeflected plate". 

24 Line 3 from top, replace "simply" by ''freely". 

38 Line 2 from top, replace (39) by (42). 
6 Line 4 from top, read E = 10 x 10 . 

40 Line 2 from top, replace (43) by (46) . 
41 Add the following after equation (G5). 

I' Note 

W - - - (-$) sin- 4 H X  9 
2 '  

b cos 
x x  a 

and 

as Nx i s  a compressive force. I f  the 
3.84 E h3 

x i  = -kb2 
of (G4), one gets - N x i  wxx  

above values are substituted in the term 

- (+) 2 sin - 4 H X  cos ?(' Eh3) of (G5) . 
a 
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Page - 
an d 

107.1 I29 
5 44 Line 1 1  from top, replace - 107.1129 by - 

856.9028 . 
5 - 856.9028 by - 

and 
437.131 4 

Line 12 from top, replace 437.1314 by 

349.705 1 
5 349.7051 by 

and 
544.2502 

5 Line 13 from top, replace - 544.2502 by - 

435.4001 
5 - 435.4001 by - 

45 W Line 5 from top, replace - 
h by $k 

W W 49 Line 3 from bottom, replace T;- by xh 
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SUMMARY 

A convenient method i s  presented to analyze the problem of a buckled panel, typi- 
cal of the S - II stage forward skirt, under acoustic loads. It i s  proved that the 
total response (deflection) w consists of two components, the static and the 
dynamic, and superposition i n  a modified form i s  valid. The static component of 
the displacement of the deflection surface i n  the post buckled state i s  calculated, 
using von Ka'rmdn equations, and Galerkin method. The dynamic component of 
response i s  calculated formally, uti l izing the concept of equivalent fictitious 
uniformly thick anisotropic plates for m a l l  vibrations due to acoustic loadings. 
Having obtained W, the method of analysis to obtain the principal strains, i s  
formulated. 

A H f M O R  
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1 .o INTRODUCTION 

Aircraft and aerospace structures, because of severe weight limitations, normally use 
thin plates as structural elements. As a consequence, many structures are used in  a 
post-buckled state. "The crit ical load for a rod i s  practically the ultimate load; the 
plate fixed on a l l  edges, however, can support a load which exceeds the crit ical load 
tenfold" according to Bolotin (ref. l), a well-known authority i n  the f ield of elastic 
stabi I i  ty . 

In addition, thin plates subiected to compressive forces i n  one direction are expected 
to survive the environment of dynamic forces. The purpose of this study i s  to determine 
the dynamic characteristics and the structural response of the buckled panel. 

The compressive loads arise from the inertia and thrust loadings and vehicle bending 
during adjustments i n  flight path. Also present, but not considered in  this study, are 
the tension loads due to internal pressure and vehicle bending. In essence, i t  i s  
estimated that many combinations of tension and compression can and do exist. The 
dynamic forces consist of oscillating shocks, steady and unsteady aerodynamic forces, 
and acoustic loads. 

The present study i s  concerned with small vibrations of a rectangular plate, under a 
uni-axial inplane compressive load system, (as it i s  most critical) and lateral dynamic 
forces. The object of the present investigation i s  to obtain information regarding the 
response (deflection and stresses), frequencies, and mode shapes. 

1.1 Literature Survey 

A literature search of publications, i n  fields which are closely related to the problem 
at hand, i s  made. A representative list consists of the following references (refs. 2 - 6). 
The starting point, invariably, i s  the non-linear partial differential equations of large 
deflection theory of plates, known as von Kdrrnth, Tsien equations (ref. 7). With few 
exceptions, most of the investigators utilized energy methods, perturbation methods, 
and power series methods (ref. 8) of analysis. The linear theory of plates (the deflections 
are small as compared to thickness) i s  not valid, i f  the static behavior of plates i n  post- 
buckled state i s  to be investigated. For the dynamic behavior of plates, tha classical 
small vibration theory i s  valid as the amplitudes are IIsrnaIIII ; and ''iump phenomenal' 
i s  not noticeable, under acoustic loads. 

1.2 Method of Approach 

In  this study, i t  i s  proposed to use methods of analysis, which are conceptually different 
from those of the earlier investigators. The given problem i s  divided into two parts and 
the responses calculated separately; and then superposed. 

The rectangular panel under study along with i t s  coordinate system i s  shown i n  Figure 1 .  
The problem, i n  Figure 1, i s  equivalent to  that shown i n  Figure 2, i f  the regions at the 
ends i n  close proximity, (where the inplane loads of Figure 1 are replaced by the 
statically equivalent loads of Figure 2) are ignored. 

1 
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1.2 

Let us concentrate our attention on a plate element of width unity, as shown i n  
Figures 3 and 4. 

The present state of knowledge of the buckling strength of metallic structures can be 
summarized as follows. (ref. 9 ) .  

"The buckling load of a plate i s  considerably increased by lateral normal pressure. 
The normal pressure causes a much smaller increase in  buckling load of a plate with 
fixed edges than that of a plate with simply supported edges". 

The above comments by Bleich (ref. 9) ,  based on the work of Levy and his associates 
stresses the importance of boundary conditions. It i s  very well recognized that 
boundary conditions play a significant role i n  static and dynamic behavior of structural 
elements (ref. 10). 

A plate continuous over a number of supports and carrying normal and edgewise loads 
has edge conditions which are "partially f ixed". However, i n  the technical literature, 
i t  i s  often found that mathematical convenience overruled the physical reality. 

For simply supported plates, whose aspect ratio i s  4, Levy and his associates assumed 
the number of half waves i n  lengthwise direction equals 5 (compressive load i s  parallel 
to the length), while Gerard (ref. 10) claims, i t  i s  4. Levy also concluded that the 
assumption of 4 or 5 half waves introduces an error less than 5 percent i n  the final 
solution. 

1 Superposition i n  a Modified Form of Beam-column Loadings and Responses 

It i s  possible to superpose the response of the two beam-column effects of Figure 5, 
under certain conditions. 

The deflections and bending moments (stresses) i n  beam-columns are not proportional to 
the axial end compressive loads. 
constant, the responses can be superposed, (ref. 11) i n  a modified form. 

However, i f  the end compressive load remains 

For the simply supported ''beam" of Figure 5 (a) 

D -  I" W1 

2 
a x  

+ V 

L J 

where 

M1 1 - Pw 

M1 i s  the bending moment due to the lateral load, D i s  the flexural rigidity of the 

2 



plate, v i s  Poisson's ratio, w i s  lateral deflection, and P i s  the axial end 
compressive load. 

For the "beam" of Figure 5 (b) 

where 

I 

L J 

M2 i s  the bending moment due to the lateral load. 

Adding (1) and (2), (3) isobtained: 

= (M, + M2)  - P w  2 (3) 

Equation (3) i s  the differential equation of bending of the "beam" of Figure 4, where 
M1 + M2 i s  the bending moment due to the total lateral loads q1 + q2 , whose 

response i s  w + w Equation (3) is s t i l l  valid i n  the special case when q and 

M1 are zero. 

The only assumption made in the derivation of the superposition of the beam column 
effects i s  that the bending moment of a plate element i s  defined by the expression 

1 2 1 

even in the post-buckled State-This analysis i s  performed under the restrictive 
assumption that the deflections of the plate are con sidered to be finite, even though 
sufficiently small, so that the slopes of the plate elements are negligible as compared 
to  unity. The above assumption i s  realistic as many investigators, including 
Timoshenko (ref. 12) studied post-buckling behavior of plates, under the above 
limitations. 

3 



In Section 2.0, the deflection of a plate without any lateral load, but under a 
uni-axial compressive load, i n  a post-buckled state, i s  examined. In Section 3.0, 
the deflection of a buckled (corrugated) plate with lateral load and under a 
uniaxial compressive load, i s  analyzed. 

The analysis is based on the assumption of elastic behavior of the plate. 

4 
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2.0 MAT HEMAT CAL FORMULAT ON OF THE PROBLEM-STATIC DEFLECTION OF 
THE BUCKLED PLATE 

In the following analysis, let  the x o y  plane be the middle surface of the plate, 
and let o z  be the direction of the lateral deflection. The plate i s  subjected to i n -  
plane static compressive loads, and to lateral acoustic loads i n  the z direction. 
A typical repeating section of the plate bounded by two stiffeners at two sides of the 
plate, i s  analyzed. The stiffeners are parallel to x axis as shown i n  Figure 2. The 
thickness of the plate i s  h. In  the absence of body forces, the two well-known non- 
linear partibl differential equations of compatibility and lateral equilibrium for bending 
of plates id the case of f inite (but not too large) deflections known as von Kdrmch - 
Tsien equations (ref. 7) are (the deflections are no longer small as compared to 
thickness). 

where E i s  the Young's Modulus of elasticity, A ( = v 2 ) represents the Laplacian 

Operator, F i s  the Airy stress function, w i s  the lateral deflection of the plate, 
N i s  the constant ini t ial  stress resultant, h i s  the plate thickness, and q i s  

the load per unit area applied to the lateral surface of the plate. The derivations 
of (4) and (5) are shown in  Appendix A. The flexural rigidity i s  

x i  

D =  E h3 

12(1 - v2)  

where v i s  Poisson's ratio. Equations (4) and (5) are derived under the 
assumption that the deflections are finite, even though sufficiently small, so as to 
neglect the angles of rotation in comparison to unity. A consequence of this 
assumption i s  that the simplified formulae for curvatures of a plate are applicable. 
In this report, an approximate engineering solution i s  presented. 
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2.1 Method of Solution of Buckled Plate i n  Postbuckled State 

The deflection w (x , y) of the plate (Figure 6) i n  postbuckled state, i s  expressed 
as a series of assumed functions i n  the following form, after Levy and Navier (ref. 12) 

0 0 0 0  
mlrx nTrY . 

cos b w(x, y) = C C sin - 
a 

m=4 n=1,3 

Since the plate i s  continuous i n  both x and y direction and the plate i s  connected 
at few isolated rivets to the stiffeners, i n  this report, simply supported edge conditions 
are assumed for the plate. 

w (x, y) should satisfy the assumed geometric boundary conditions; they need not 
satisfy the natural boundary conditions. The number of buckles i n  the x and y 
directions depend upon the plate geometry and boundary conditions (ref. 10). For 
the conditions assumed, m equals 4 and n equals 1, where m and n are the 
number of half waves in the x and y direction. However, note that explosive 
changes of wave pattern to a different stable position can and do occur. This 
phenomena i s  known as "oil-canning". Using (7)  i n  (4), one can obtain F as 
shown below in  the next section. 

2.2 Ca I cu la t i on of St ress Function 

2.2.1 F i rst Approxi mat i on : 

Replacing w (x, y) by the first term of the infinite series; and substituting the 
derivatives of w in (4), one obtains (refer to Appendix B for details.) 

2 41rx 2 rry 
b si  n 

V 4 F = E A:, ($r(f-)2 [COS - 
a 

b 41rx a co2 -1 - sin - 

6 



2 4 r x  
a f, (y) COS - 

2 4 r x  - f2 (y) sin - I 
a 

where 

2 " Y  
b si n - 

f l  - 

and 

2 = Y  cos - - - 
f2 b 

7 



2.2.2 Fourier Finite Sine Transform of the Nonhomogeneous Partial Differential Equation., 

There are various methods by which (9) can be solved. One convenient method 
of analysis, (refs. 13 and 14) i s  by application of Fourier f ini te sine transforms 
with respect to x on (9). The boundary conditions on F at the simply supported 
edges x = 0 and x = a are (ref. 6) 

F = Fxx 1 0 .  

The Fourier f inite sine transform with respect to x i s  defined by the following 

Uti l iz ing (lo), (ll), and Appendix C, (9) reduces to 

where 

Further, L, and L2 are the Fourier f inite sine transforms with respect to x of 

- respectively. [The details of the derivation of Lk 2 4 R X  
and sin 

2 4 R X  cos - 
a a 

(k = 1, 2) are shown in  Appendix DJ . 
Note that 

and 
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2.2.3 Complete Formal Solution of Stress Function. 

To solve (12), i t  i s  convenient to separate 'F into two parts, the homogeneous 
solution F 1  I and the particular integral F where 2' 

F = F + F .  1 2 

The solution of the homogeneous equation 

2 2  ( D 4 -  2p  D + p 4 )  F1 (p, y) = 0 

i s  well-known and i s  (see Appendix E for details) 

Fl (P, y) = C1 sinh Py + C2 cosh py  

+ C3y sinh Py + C y cosh py  * 4 

Particular I ntegra I : 

The method of undetermined coefficients i s  uti l ized to obtain the particular 

solution of the differential equation (12). 2 

2 2  (D4-  2 p  D + p4) F2(p, y) = B1 f l  Ll + B 1 2 2  f L ' 

where F and are solutions of equations? (20) and (21) . Note super- 

position of solutions i s  valid for a linear differential equation. 
21 22 

(D4 - 2 p  2 2  D + 84) F21 = fl 

and 

- 
f2 * 

2 2  - (D4 - 2 p  D + 84) F22 

9 



1 21T 
sin y 

21T 
sin - b y  

2 2  
(P2 + F) 

1 I -  
Now (12) i s  rewritten as (24), using (15), (13, (18), (19), (22), and (23). 

The complete solution of (12) i s  given by 

- 
F = C 1 sinh Py + C2 cosh P y  

+ C3y sinh Py + C4y cosh Py 

+ B 1  L1 F21 + B 1  L2 F22 

where 

- 
and F22 are defined by (22) , (23) ; F2, 

I 

L1 and L2 are defined by (13) , (14) . 
I n  view of the symmetry of loading, geometry, and boundary conditions, 

= o *  
c4 . .  c, = 0 and 

10 



(ref. 6) : b 
2 

At  the unloaded, supported edges y = f - 

F = O  

and 

F = O s  

YY 

Let us take Fourier f inite sine transforms of the boundary conditions (30): 

T[Fyy (x, - = T[F(x, - j- q = o *  

Therefore (29) and (30) reduce to 

b b 
YY ( P f  7)  = F(p ,  T )  = 0 

F ( P T T )  b = y p ,  - T ) =  b 0 
YY 

Substitution of (26) i n  (24) reduces (24) to (33),  denoted by 

= C2 cosh Py + C y sinh Py 3 

+ B1 L1 r21 + B1 L2 F2, 

where 

B1 isdefined by (9) , 

L1 and L2 are defined by (13) and (14) 

F22 and F22 are defined by (22) and (23) . - 

1 1  



Applying the two transformed boundary conditions of (31) on (33), one derives 

I 

- - B16ech -2-N Q b L  1 + L  2) [ pb 2 tanh % + * I  2 
4 P4 

c2 - 

and 

E *  
2 sec h L1 + L2) - 

4 P3 
c3 - 

t 

(34) 

(35) 

+ B1 [Ll F21 + L2 F22]  

where 

C2 and C3 are defined by (34) and (35) . 

The inverse Fourier Finite sine transform (ref. 13) with respect to x i s  defined 

(36) 

If we assume that 
(replace p by 1 

m 

p=l 

the first term of the truncated infinite series i s  a good approximation 
), then (37) reduces to (38) 

2 T X  x - F ( I ,  y) sin - 
a a 

A n  approximate stress function i s  formally derived, as presented i n  (39). 

12 



B~ il + i 

+ [ ( 
2, sech e] 2 y sinh P y  

4 P3 

lTX 

where Tl and T, define (13) and (14) with p = 1. 

Application to a Specific Problem. 
I 2.2.4 

Let us apply the analysis to a specific problem, a typical panel of Saturn S II. 
(See Appendix F) . 
From (13) and (14) I 

- 62 a 
63 H 

r, - - 

- - 64 a L 2 - - - *  63 H 

. . F (x, y) E, cosh P y  + Eq y sinh Py + 

( 39) 

13 



where 

t 

E l  = - 5.545815093792 x 

= 5.936356937513 x E2 

O8 4 1  

10 
= 7.217449305230 x 10 E3 

7 c) 

5 1  1 - 1.708272024815 x 10’ E4 

10 = 7.450270250789 x 10 E5 

= 1.607793440693 x lo-’ E6 

The above values of E 

details, refer to Appendix F . ]  . 
(k = 1 ,  2, . . . 6) are obtained on a computer. [For k 

The derivatives of (42) are as follows: 

F xx x -(tf [E,  cash P y  + E2y sinh P y  + ( E 3 + E5) 

+ ( E 4  + E ~ )  sin y sin - 
2 H  1 

F x (9) [El P sinh P y  + E2 ( y P  cosh P y  + sinh P y )  
XY 

+ (E4 + E6) cos y cos - H X  

a 

F [ E l  P2 cosh P y  + E2 P ( y P  sinh P y  + 2 cosh ~y 
YY 

2 

-(+I (E4 + E6) sin 2 ~ ]  a 
y sin - T X  

14 
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2.3 Optimization of Second Equation of Ka’rm6n - Tsien by Ritz - Galerkin Method. 

x i  
Now, w as defined by the first term of (7) and F, as defined by (42) and N 

from ref. 9 are substituted i n  (5). Since w and the associated F are 
approximate, (5) does not vanish. However, the expression (5) i s  a cubic in  the 
unknown parameter A. 

by utilizing the Ritz - Galerkin method, defined by (ref. 3) 

Therefore (5) should be satisfied in the mean, approximately, 41 

d x d y  = 0 * 
a w  
9A41 

[The detailed evaluation of (46) i s  shown i n  Appendix G ]  . 
Reference 15 i s  utilized i n  the evaluation of the integrals of Appendix G. 

2.3.1 Examples 

Let us concentrate our attention on two different thicknesses of plate, namely h 1 
0.040” (Case 1) and h = 0.032” (Case 2) . The final results of Cases 1 and 
2 are presented in  Table 1. 

For Case 1, 

h = 0.040” 

Eq. (46) reduces to 

A41 [(303.05 - 314.42 k) + (-107+ 437 -5.44) 10 A41 = 0 (47) 

where 
total load on the panel 
Euler cr i t ica l  load of the panel 

k =  

A41 = o  (48) 

i s  a trivial solution, corresponding to the unbuckled state of equilibrium condition. 

If k = 1, i.e., at the onset of buckling A41 equals 0.000175 , and 

W .. 
max 

equals 0.0044 . - 
h 

15 



t For Case 2 , 

h = 0.032" 

Eq. (46) reduces to 

Agl 1155.16 - 160.98 k) + ( -85 .7+ 349.7 - 4.35) 10 = O .  (49) ' 1  
From reference 16, we know that a plate with 4 bays was subjected to 58,540 Ibs. 
Therefore, i f  we assume that each bay takes 1/4 of 58,540 Ibs. or 14,635 Ibs., 
then 

- 14,435 54 . - X 
N 

N 
k = -  

273.6 
x cr 

The value of N i s  obtained from reference 9. 
x cr 

For two different values of h, A4, which defines w 

dimensional curve, defining k versus 

values corresponding to the nondimensional curve are evaluated i n  Table 1. It i s  
observed that al l  the values fal l  on the same nondimensional curve. I f  the non- 
linear terms in  (47) and (48) are ignored as a first approximation and i f  k = 1 , 
the equations are satisfied within engineering accuracy. These two observations 
suggest that the analysis i s  reasonably free from algebraic errors.' However, the 
author feels that the values for the depth of the buckle look low, probably due to the 
fact that infinite series were replaced by single terms. 

i s  calculated. .A. non- 
m ax 

W 
max - i s  plotted i n  Fig. 7., and the h 
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3 .O MATHEMATICAL FORMULATION OF THE PROBLEM - RESPONSE OF THE 
BUCKLED PLATE UNDER UNIAXIAL COMPRESSION AND LATERAL ACOUSTIC 
LOAD1 NG 

As explained earlier i n  Section 1.2.1, the second component of the response, which 
i s  dynamic i n  nature, can be calculated by one of the following methods. 

(1) strain energy methods 
(2) methods of shallow shell theory 
(3) plate with init ial  imperfections 
(4) anisotropic plate theory 

For the present analysis, i t  i s  proposed to apply the anisotropic plate theory type of 
analysis, as i t  i s  simple; consistent wi th  the fact that i t  gives reasonably accurate 
answers (ref. 17) in a limited time. 

3.1 Method of Equivalent (Anisotropic) Orthotropic (Buck led) Plates. 

For ease of handling the problem analytically, the buckled plate i s  replaced by a 
fictitious orthotropic plate of uniform thickness. (Materials which have three 
mutually orthogonal planes of elastic symmetry are said to be orthotropic.) The 
equivalent elastic constants of the orthotropic plates should be obtained from the 
buckled state. The elastic constants are used in  the linear non-homogeneous partial 
differential equation shown in  equation (51). The orthotropic theory and the 
method of analysis are not new and are widely used in  the calculation of static and 
dynamic responses of corrugated plates, reinforced concrete slabs, laminated 
structural panels, wooden plates etc. 

3.2 Dynamic Equations of Motion 

Let w (x, y, t) be the transverse displacement of a vibrating orthotropic plate of 
uniform thickness h. The governing equation for the deflection w, under the 
combined action of the acoustic loading q and edgewise compression force N 

(neglecting the rotary inertia and shear deformation) is:  
X 

4 a w  
ay  

4 

4 + D  a w  D -  
X 4 a x  

aL aL 
a t2 a x  

4 (x, Y I  t) - p h  - - N  - =  
x i  2 

Assume the plate i s  subiected to a normal uniform (constant) acoustic loading. 

17 



Introducing the notation, 

H = D  + 2 D  
1 XY 

Equation (2) reduces to: 

2 a w  
a Y  a t2 

4 
a w  + D *\= q - p h -  

4 
a w  

a x  2 2  D - + 2 H  
a x  a y  X 4 

The solution of (53) with the associated boundary values and init ial  conditions i s  the 
response of the buckled plate under (dynamic) acoustic loads. 

3.3 Boundary and Init ial Conditions 

Referring to Figure 6, the boundary conditions at a l l  the four edges are assumed 
to be simply supported. Init ial  conditions for the fictitious corrugated plate may 
be assumed to be specified displacement and velocity at t = 0. 

3 . 4  Mathema ti ca I Ana ly si s 

Equation (53) i s  a linear, partial, non-homogeneous differential, equation. There 
are various classical methods available i n  the literature for its solution that are 
consistent with the assumed boundary and 
"variable separable'' method, also called 

We assume that 

ini t ial  conditions. We follow the 
the product solution. 

In view of the geometric boundary conditions at the edges x = 0, x = a, 

and y = f - the deflection surface function (54) may be written as 
b 
2 '  

Tm$) (55) 
mmx (2n + 1 ) r y  

b w (x, y, t) = xx sin - a cos 

m=l n=O 

18 



3.4.1 Homogeneous Solution 

Substituting (55) in (53) I with q = 0 and dividing the entire expression by 

sin - cos 
a 

rnax ( 2 n +  1)ay 
one obtains : b mn 

where dot denotes differentiation with respect to independent variableiime t. 

In the following analysis, we focus our attention on a single harmonic and delete 
the.subscripts mn, up to end of (61) separating the space and time variables 
of (56), we have 

D (?)4 + 2 H ( F r ( 2 n L 1 ) 2 m 2  + D y ( 2 n 1 1 )  4 4  

X 

mn - g, a constant 
mn 

2 T 

+ Nxi(Y) = - Ph 
- 

where g i s  real (positive, negative or zero) or complex. 

.. - . .  - P h  Tmn - 9 Tmn 

- s where 91 - - 

(5 7) 

and g i s  real (positive or negative) or complex. The possibility that g = 0 1 1 
i s  ruled out as T( t )  should be bounded for large values of t .  

19 
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Solution of (59) reduces to 

T = G 1 e  Kt + G~ e - q t  . 

If g, i s  real and negative, T(t) has bounded solutions; i f  g1 i s  real and 

positive, T has unbounded solutions and dynamic instability sets in. For this 
analysis, we assume that there i s  no instability and the solutions are bounded. 

. . g1 isnegativeand let g = - g, and g > 0. 2 2 

Equation (60) may be rewritten as follows: 

T = G 3 cos Kt + G4 s i n s t  (61) 

where G and G are constants to  be evaluated from the init ial  conditions. 

Equation (55) reduces to 

3 4 

L m=l n=U 

s i n v F  t - 
mn 3 + G4 

3.4.2 The Complete Solution 

I Let us assume that the acoustic load may be expressed as: 

Assume that it i s  possible to expand the spatial distribution of load Q (x, y), 

as an infinite series, similar to the expansion of (62). Then 
0 
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a, a, 

t 

m r x  (2n + 1)ny 
a cos b 

m=l n=O 

where 

(2n + 1 ) r  
cos .+ d x d y  

m r x  
Qo(x, y) sin - 

a 
0 -7 

L - - 
qmn 

sin - r n r x  cos (2n + 1 ) r y  l2 d x d y  (65) 
b ja a 

0 -- r )  
L 

Note 

m r x  
sin - cos 

a 
€3.5 COS -1 d x  d y  

b b 
0 -- 2 

= O  i f m f p  or n f q  (66) 

as the orthogonality property between the mode shapes s t i l l  holds good. 

The assumed solution for w namely (53, and (61) are substitu.ted i n  (57) and 
we obtain the natural frequency as 

4 
+ D (y) X (67) 

Y 

mn 
g2 

The acoustic load i s  a time varying force, of an arbitrary nature, the time 
dependent part of w (x, y, t) should include an additional contribution of 
Duhamel integral type of representation, defined by 

t 4 f ( T )  sin w (t - T )  d T 

mn 
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where 

i s  defined by (65) and 
qmn 

g2 by (67) 
mn 

Now (62) reduces to 

(2n + l ) n y ]  [ A  cos&- t 
mn 

b w(x, y, t) = cos 
x [ s i n  a 

m=l n=U 

qmn I t f ( T ) s i n  o ( t - 7 ) d - r  + B s i n , / F t  + - 1 
mn 0 mn 92 

A formal solution of the dynamic response of a buckled plate i s  presented. To 
evaluate (68) explicitly, knowledge of A, B, and f(t) are required. 

3.5 The Response of the Buckled Panel under Acoustic Loading 
I 

I 

The deflection of the panel consists of two components, namely the static component 
and the dynamic component. The static deflection component i s  defined approxi- 
mately by (7) with one term, where the coefficient A i s  defined by the 41 
appropriate value for the plate of specified thickness. The dynamic component i s  
defined by 
Explicit numerical values for the maximum principal strains i s  not possible at this 
stage without a specific definition of the acoustic loading. However, the 
analysis can be made as follows: 

(68) for any specified init ial  conditions and acoustic loading. 

Having obtained w, following Timoshenko's notation (ref. 12), the following 
generalized forces can be derived. 
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3.6 
i 
I 

aL w aL w 
2 

a Y  
= - D 1 -  2 - D  - 

Y a x  

a2 
xy a x a y  M = -  2 D  

XY 

Now the bending stresses can be expressed in terms of the bending moments as 
follows: 

12M z 
X 

u =  
h3 X 

12M z 
xy 

2 3  T =  

xy ( 1 - v ) h  

12M z 
u -  -2. 

Y h3 

h 
The maximum bending stresses occur at z = f - 2 

From the stresses defined by (23) one can derive the principal stresses by using 
Mohr's circle or otherwise; and the principal strains by using (Al) .  

Evaluation of Elastic Constants of Equivalent Uniform Orthotropic Plates 

( 73) 

h = 0.040" 

assume I =  s 

D =  D = 6 3  
X Y 

H = 42 

D I C  0 

[The semi-empirical formulae presented by Seydel and reproduced on p. 367 of 
(12) are utilized.] 
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4.0 CONCLUSIONS AND RECOMMENDATIONS 

The present theoretical analysis i s  based under certain assumptions mentioned below: 
The four edges are simply supported. The modified stress function includes the end 
compressive forces, which are constant even i n  post buckled state. The double 
infinite series for w i s  replaced by the first term of the series. Similarly, the 
inverse of the stress function, also an infinite series, i s  approximated by its first 
term. The second nonlinear partial differential equation of von Ka'rmfin i s  solved 
in  an average manner. A l l  the above simplifying assumptions do introduce certain 
errors. The methodology applied i s  conceptually different from any available in the 
Iiteroture. A very interesting feature of the analysis i s  Figure 7. From the basic set 
of equations, the depth of the buckle for two identical sheets, but of different 
thicknesses, i s  calculated for various end loads i n  post buckled region. When 
plotted i n  a non-dimensional manner, both the curves reduce to one master curve, 
as they should. 

The boundary conditions play a maior role in al l  buckling problems; as such, the 
realistic boundary conditions should be introduced i n  the theoretical analysis. I f  
one replaces any infinite series, by finite number of terms, one should consider more 
than one term. However, this suggestion increases the algebra considerably 

To calculate the dynamic response, the buckled sheet i s  replaced by a fictitious 
uniformly thick anisotropic plate. The buckled sheet which has 4 half waves i n  one 
direction and 1 half wave in  a perpendicular direction i s  replaced by a corrugated 
sheet, with corrugations i n  one direction only. T h i s  i s  a crude approximation which 
probably led to a great sacrifice i n  accuracy. For a more precise analysis, a more 
realistic, equivalent anisotropic plate analysis has to be used. 

Equation (68) defines the dynamic response of a buckled sheet, under acoustic 
loading. For various mathematically tractable forcing functions, (68) can be 
evaluated. 

The value of this report could be enhanced by use of electronic computers and 
additional analysis. 
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APPENDIX A 

THE EQUATIONS OF EQUILIBRIUM OF A PLATE ELEMENT 
IN POST BUCKLED STATE 

Let u, v, and w be the displacements parallel to the axes of x,y, and z, 
respectively, where the z axis i s  normal to the plate; the equations of equilibrium 
of a plate element can be derived from the well-known static equations of an element, 
treated as a free body. 

Assuming u 
bending are 

i s  negligible, the stress strain relations for a thin plate element in  z 

1 
€ X = -(u E x  - v u )  Y 

where 

= - ( c l - v u )  1 
Y E Y  X 

1 
Y"y - G ('xy) 

- -  

E G =  
2 ( 1 +  v )  

From (Al )  , we obtain 

E 

1 - v  
u =  X 2 (Ex + fy)  

E (cy + " E x )  
2 u =  

Y 1 -  v 

I f  there are no body forces acting in  the middle plane of the plate, the differential 
equations of equilibrium of an element d x d y  in  the plane of the element become 
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1 - +  y ( 1 - v )  
Eh 

1 -  v 

a 
X 1 ac 

+ - ( 1  - v )  
Eh 

1 -  v 
2 a x  

Wi th  in-plane and normal loadings, 
in z direction reduces to 

q (Ib per sq. in.), the equation of equilibrium 

2 

X 
+ ( €  + v €  

a w  
E h  2 [(E X + V € ) T  Y 

4 

Y ax  
D V  w = 

1 -  v 

where 

and 

a4 
a Y4 

+ -  a4 a4 v 4 =  - 
a x  + 2  2 2 a x  a y  4 

A 

E h3 D =  
12 (1 - v ' )  

Following Timoshenko and von Kdrrndn, i t  i s  assumed that the deflections are not 
small as compared to plate thickness, but small enough to justify the use of the 
application of simplified formulae for curvature of a plate element. 

The strain displacement relations for the large deflection plate theory are: 

2 a u  1 
X a x + ?  (e) = -  

- a u  a v  a w  a w  
Y"Y a Y  a x  a x  a y  + - + -  - - -  
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N 
Y 

h a2 7 

aN 
X x y =  0 

aN 
- +  

a x  a Y  

where N N , and N are normal forces per unit length parallel to x and 
Y XY Ib 

y axes and shear force in  x y  plane (dimensions 7 )  in. respectively. 

- A great simplification can be made i f  one introduces a stress function defined by 
F, which satisfies (A3). 
- 

a2 4 
XY a x  a y  N = - h  

Noting that 

= a h  
X X 

N 

N = a h  
Y Y 

and substituting (A2) i n  (A3), one derives the following equations. 
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Differentiating the two equations of (A6) by x and y, respectively, and adding 
the two equations, uti l izing (A4) and (A8) ; (A6) can be replaced by the 
compatibility equation defined by 

2 2 
v47 - E[(-) - - a w  

2 
a x  

Uti l iz ing (A4) and (A8), (A7) reduces to 

i 

If the plate i s  under uniform uniaxial loading as i n  Figure 2, 
separate the in i t ia l  stress resultant N from N and define a new stress function, 

defined by 

i t  i s  convenient to 

x i  X 

Then (A9) and (A10) are replaced by (A12) and (A13) defined by 

2 2 

v4F - E[(&) 
- - a w  "3- 0 

2 2 a x  a y  

and 

2 N a w  
x i  

2 2 
4 a 2 F  a w  a~ q = D V  w - '.[2 - t - - + - - 

2 a x  2 2 h 
a Y 2  a y  a x  

1 -  2 a 2 F  a w 
a x a y  a x a y  

- 2  - 
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APPENDIX B 

THE DERIVATION OF EQUATION (8) 

Let us work with one term of the infinite series of (7) . 
Let 

=y . 4 r x  
a cos b w = A41 sin - 

Then 
#, z 

a w  - 4 r x  'Y 
a x a y  - cos a sin 

2 2 

n 2 
* Y  aL 4 r x  

a x  2 =-A4,(+) sin - a cos - b 

= - A~,(+) sin - 4 r x  cos =. 
b 

a' 
a 

a Y 2  
Substitution of (B3), (B4), and (B5) in (4) reduces (4) to 

1 
2 4 r x  

sin - cos 
a 
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APPENDIX C 

So I ve 

I 

Substitute Into 
Part ia I Differentia I 

The Solution. 

App I y Successive 
Transforms 
n - 1 Times. Equation to Check ’ -Solution* - Invert Apply 

Transformed 
- Boundary I 

APPLICATION OF FOURIER F I N I T E  S I N E  TRANSFORMS WITH 
RESPECT TO X ON EQUATION (9)  

Inverse Function 
of n Independent 
Variables-Which 
i s  the Solution 
Required. 

The method of anolysis i s  better explained by the following line diagram, 

Algebraic Equation 
i n  the Form of n 
Transformed Variables. 

Invert 
4 --------- So,ution 

Respect to  One 
Independent 
Va r i ab I e. 

Partial Differential 
Equation of n - 1 
Independent Variables 
and One Transform 
Parameter. -T 
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It i s  assumed that F(x, y) satisfies the Dirichlet's conditions in  the interval 

O l x l a .  

Then 

U 

i s  the definition of Fourier f inite sine transform with respect to x .  

The inverse of (Cl) i s  

Applying (C l )  on each term of (9) ,  on obtains 

f (Y) T [sin 2 7 3  4lrx 
+ B 1  2 

Note T, the sine transform with respect to x treats y asa constant. 

The transforms of the derivatives of F are obtained as follows, using the method 
of integration by parts: 

sin - 'lrX d x  
a a x  

P.5 d x  
s i  n - p la cos a 

- i3F - -  

0 
a x  

where P r  P =a 
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i *  
I 
I 

2 -  = - p  F(P, Y) 

i f  F(a, y) = F(0, y) = 0 . 
Further note that 

T 1 2  a 4 F  2 2  
L a x  a y  

Simi larly, 

I f  

then 

I 

Using (C4) and (C5) in (C3) , (C3) reduces to 

2 4ax  p 4 r  - 2 p  2 - a2F + - a4 F = B f (y) T [COS 7-1 
1 1  

a Y 2  a Y 4  
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+ 8, f2(y) T [ sin - 4:x3 
The simplification of the expressions on the right hand side of (C8) i s  performed 
in Appendix D . 

I 
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I 

where 

APPENDIX D 

FOURIER F IN ITE SINE TRANSFORMS WITH RESPECT TO X OF 
2 4HX AND sin 2 - 4HX . cos - 

a a 

a 
sin pax d x  T[cos 2 -1 4HX =( cos 2 - 4 r x  

a a 

From p. 142 of Ref. 15 , after considerable simplification, (D2) equals 

Simi larly, 

sin d x  2 4 a x  T [sin 7 1  =J sin - a 
a 

a 2 4HX 

4H 
2 -  Pi2 sin x sin - dj; 4 

where 

From p. 140 of Ref. 15 , after considerable simplification, (D4) equals 

I *  - 2a [i - 1)P - I] [ ,  + 1 

+ p )  2 ( 2  - 5 )  

36 



APPENDIX E 

SOLUTION OF HOMOGENEOUS EQUATION 
2 2  (D4 - 2 p D + p4) Fl (p, y) = 0 

P =  and p = - a 
a Y  a 

Note D = - 

The given equation reduces to 

The roots of the equation are 

repeated twice. 
2 2 D = p  

D = f P repeated twice. . .  
- F1 = (5 + 5 Y )  e@ + (t3 + c 4 y )  e - P Y  . .  

+ C3Ysinh Py + C4y cosh ~y - 
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APPENDIX F 

EVALUATION OF CONSTANTS Ek of (39). 

The following constants are assumed for the panel under study. 

E = 1 0 . 5 ~  10 

a = 36 

b =  9 .  

Therefore I 
It 

P = 3 6  

x - Pb then 
- - T  I 

sech X = 0.9275557714514 

tanh X = 0.3736847478780. 

I f  

Note 

= E($)2 (t) 2 A:l . 

Further 

(sech X )  

62 x -  - B 1  a 

P4 
E3 - 2 x  6 3 r  
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APPENDIX G 

OPTIMIZATION OF (43) BY RITZ-GALERKI N METHOD. 

+b/2 a w  JaIb qTl dx d y  

0 -2 

xx 
x i  

= / / [ D V 4 w - h [ F  w + F w - 2 F  w + -  N 
xx YY YY xx XY XY h 

sin - 4H X cos 71 d x d y  a 

4 a w  a w  - hF wXx 

a Y  a x  a y  

4 

YY 
+ 4 - hFxxwYY 

+ 2 0  - 2 2  

+ 2 h F  w - N x i  w xx 1 [ s i n y  4HX cos 31 dx d y  
XY XY 

YY wxx 
+ 2 D w  + D w  - hF w - h F  

= f j ID wxxxx XXYY YYYY xx YY 

EY 1 d x  d y  b 
+ 2 h F  w - Nxi wXx 1 [ s i n  7 cos 4HX 

XY XY 

+ 2 D A 4 1  (2)  (t) s in  - 4HX H Y  
2 2  

cos b a 

4H X 2.Y 
4 

‘Os b 
+ D (t) sin - 

a 
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41rx l y ) ( s in  :)[E1 ch Py - h(:) (t) Aq1 (sin a 2 2  

cos 7;- 

+ h ($) 2 A4, (sin :)[E 

E ) + (E4+ E6) sin $ y ]  5 

- (E4 + E6)(sr sin ~ y ]  (sin - 4 r x  a cos y) 

- 2h(:)g)(t) A41 (‘Os :)[E1 P s h  P Y  + E ~ ( Y p  P Y  + sh P Y )  

+ (E4 + E6) ($)cos y ]  (cos a 4% x sin F) 

- A ~ ~ ( $ )  sin - 4HX a cos 6 my (k ,3 .7Eh3) /  4mx a cos %y dx  d y  (G5) sin - 
2 

where 

c h stands for cosh 
and 

s h stands for sinh. 
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Some integrals utilized in (G5) are evaluated below. 

i’ 

i 

a 
d x  = - 

2 
2 4 H X  

sin - 
0 

r a  
2 4 r x  T X  6 4 a  J 0 a a 63 r 

sin - sin - d x  = - 

T X  8 a x  8 a  cos - sin - d x  = - 
a a 63 n 

2 41T - sinh p b  
b2 -2- 

2 cosh B y  dy  = 
2 
b cos 

-- 2 P(P2 + 9) u 

2 p b  cosh Pb  2 4a 

p2 + -  

pb - *  T + 2 k  - 7) sinh q] (G11) 
2 2 

s i  nh 
2 - -  

4 r  

b2 

P2 
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b 

H y  sinh By d y  b 6a) y cos 

- -  
2 

b 

y sin 3 b cosh P y  d y  
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I 

Let us concentrate our attention on two different thicknesses of the plate, namely, 
h = 0.040" (case 1) and h = 0.032" (case 2). The page i s  divided into two 
sections, when the values are different. 

Case 1 

h = 0.040" 
D = 63 Ib. in. 

Cay- -' 

h = 0.032" 
D = 32.256 Ib. in. 

The integrals of (G5) are evaluated exactly i n  a closed form, ut i l iz ing (G6) to 
(G15). The coefficients of A and AB1 are listed below. 41 

Case 1 

303.0505 A41 

- 107.1129 x lo6 A i 1  

Case 2 

155.1619 A41 

5 3  - 856.9028 x 10 A41 

6 349. 7051 x 10 A i 1  
6 437.1314 x 10 A:l 

4 - 544.2502 x 10 A:l 4 - 435 . 4001 x 10 A341 

- 314 . 4237 k A41 1 - 160 . 9849 k A41 

Note k stands for the ratio, total load on the panel over Euler crit ical load 
of the panel. 
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TABLE I 

NON -DIMENS1 0 N A L  BUCK LE DEPTH 

For various in-plane compressive loads, expressed as multiples of buckling load, 
investigated for two different values of plate thickness of 0.040" and 0.032". 

k 
1 

I 1 

10 

25 

50 
1 00 

200 

W - 
h 

0.0044 
0.025 

0.035 

0.049 
0.074 
0.12 

0.17 

0.25 

0.35 



Figure 1 .  The specimen under study and its coordinate system. 

I I p  

Y I 
Figure 2.  The problem to be analyzed in this study. 

h 1 
a 

Figure 3 .  A plate element of unit width under lateral and in-plane loadings. 
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/ q2 I 

P 

w2 I 

Figure 4. The end view of a plate element under an axial end load P and 
lateral acoustic load q, + q.2 . 

I 

.---. 

Figure 5 .  The system and the associated response of Figure 5 are equivalent to 
those of Figure 4. 
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Figure 6. The buckled plate 
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Figure 7 .  Non-dimensional compressive load versus non-dimensional 
buck le depth. 
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